STEREOSELECTIVE TOTAL SYNTHESES OF (†)-RECIFEIOLIDE AND (R)-(+)-RICINELAIDIC ACID LACTONE

Koichi NARASAKA, Masahiko YAMAGUCHI, and Teruaki MUKAIYAMA

Department of Chemistry, Faculty of Science

The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

The naturally occurring macrolide, $(\frac{+}{2})$ -recifeiolide, was synthesized stereoselectively. (E)-11-Hydroxy-8-dodecenoic acid $(\underline{5})$ was obtained stereoselectively from 11-hydroxy-8-dodecynoic acid by the reduction with lithium, and the acid $(\underline{5})$ was cyclized to $(\frac{+}{2})$ -recifeiolide in excellent yield via its 6-pheny1-2-pyridy1 ester. Similarly, (R)-(+)-ricinelaidic acid was lactonized to afford the corresponding lactone in high yield.

Recently, the efficient method for lactonization of long chain ω -hydroxy-carboxylic acids was developed in our laboratory. We now wish to report the use of this process in a stereoselective synthesis of $(\frac{1}{2})$ -recifeiolide, a naturally occurring macrolide isolated from the fungus Cephalosporium recifei, and also in a synthesis of (R)-(+)-ricinelaidic acid lactone.

(†)-Recifeiolide was synthesized stereoselectively starting from the readily available acetylenic tetrahydropyranyl ether $(\underline{1})$. The acetylenic ether $(\underline{1})$ was treated with butyllithium at -30°C, and successively with 7-bromoheptyl 2-tetrahydropyranyl ether $(\underline{2})^4$ in a mixture of THF and HMPA under refluxing for 12 h. Treatment of the resulting crude product with $\text{CH}_3\text{COOH-H}_2\text{O-THF}$ (3:1:1) at 45-50°C for 4 h produced 8-dodecyne-1,11-dio1⁵) $(\underline{3}$, 52% from $\underline{1}$). The acetylenic acid $(\underline{4})^6$) was obtained in 50% overall yield from the diol $(\underline{3})$ by the oxidation with the Collins reagent (12 molar amounts)⁷) in CH_2Cl_2 at r.t., and then with m-chloroperbenzoic acid $(\underline{3})$ molar amounts)⁸ in THF at r.t., followed by the reduction with NaBH₄. The isomerically pure (E)-olefinic acid was produced by the reduction of the acetylenic acid $(\underline{4})$ with lithium. The acetylenic acid $(\underline{4})$ was treated in an autoclave⁹) with

lithium (12 molar amounts) in a mixture of liquid ammonia and THF at r.t. for 2 days to give (E)-11-hydroxy-8-dodecenoic acid ($\underline{5}$) in 53% yield. During the reduction, small amount of (E)-11-hydroxy-8-dodecenamide ($\underline{6}$) was sometimes produced as by-product which was converted to the acid ($\underline{5}$) by alkaline hydrolysis. 10) The olefinic acid ($\underline{5}$) thus obtained was submitted to lactonization. A mixture of 6-pheny1-2-pyridone (2.72 mmol), 2-chloro-1-methylpyridinium iodide (1.36 mmol) and triethylamine (2.72 mmol) in $\mathrm{CH_2Cl_2}$ (28 ml) was stirred for 1 h at r.t. To this solution was slowly added a $\mathrm{CH_2Cl_2}$ (41 ml) solution of the olefinic acid ($\underline{5}$, 0.34 mmol) and triethylamine (0.34 mmol) under refluxing over a period of 6 h to give the 6-pheny1-2-pyridyl ester (7) li) in 88% yield. A $\mathrm{CH_2Cl_2}$ (73 ml) solution of the ester ($\underline{7}$, 0.42 mmol) was added dropwise to a refluxing solution of p-toluenesulfonic acid (0.42 mmol) in $\mathrm{CH_2Cl_2}$ (49 ml) over a period of 11 h, and after purification by column chromatography (silica gel), pure ($\underline{+}$)-recifeiolide ($\underline{8}$) was obtained in 99% yield [87% overall yield from the olefinic acid (5)].

The lactonization of optically active ricinelaidic acid, (R) - (+) - (E) - 12 - (-) + (-

It is noted that the present method for the lactonization of hydroxy acid $(\underline{5} \text{ and } \underline{9})$ employing the onium salt of azaaromatic compound proceeded under mild conditions to afford the corresponding lactones in higher yields as compared with the previously reported methods. 10 , 15)

Acknowledgement. We wish to thank Professor Dr. Hans Gerlach, Eidgenössische Technische Hochschule Zürich, for his kind gift of (R)-(+)-ricinelaidic acid.

References and Notes

- 1) T. Mukaiyama, K. Narasaka, and K. Kikuchi, Chem. Lett., 1977, 441.
- R. F. Vensonder, F. H. Stodola, L. J. Wickerham, J. J. Ellis, and W. K. Rohwedder, Can. J. Chem., 49, 2029 (1971).
- 3) This acetylenic ether was prepared as follows: Lithium acetylide was treated with propylene oxide in a mixture of THF and HMPA at r.t. to give 4-pentyn-2-ol (76%), which was converted to the tetrahydropyranyl ether (1) according to the usual procedure. 10)

- 4) Methyl 7-bromoheptanoate $^{16)}$ was reduced with LiAlH $_4$ at -30°C in THF, and the resulting bromo alcohol was converted to the tetrahydropyranyl ether (2).
- 5) NMR(CDC1₃) δ 1.28 (3H, d, J=7Hz), 1.2-1.9 (10H, m), 1.9-2.4 (4H, m), 2.53 (2H, s), 3.62 (2H, t, J=7Hz), 3.92 (1H, m); IR(neat) 3330 cm⁻¹.
- 6) NMR(CDC1₃) δ 1.25 (3H, d, J=9Hz), 1.1-1.9 (8H, m), 2.0-2.5 (6H, m), 3.93 (1H, m), 8.08 (2H, s); IR(neat) 1705 cm⁻¹.
- 7) R. Ratcliffe and R. Rodehorst, J. Org. Chem., 35, 4000 (1970).
- 8) G. Zweifel and H. Arzoumaniam, J. Am. Chem. Soc., 89, 291 (1967).
- 9) R. E. A. Dear and F. L. M. Pattison, J. Am. Chem. Soc., <u>85</u>, 622 (1963).
- 10) E. J. Corey, P. Ulrich, and J. M. Fitzpatrick, J. Am. Chem. Soc., 98, 222 (1976).
- 11) NMR(CDCl₃) δ 1.16 (3H, d, J=8Hz), 1.2-2.4 (13H, m), 2.61 (2H, t, J=8Hz), 3.74 (1H, m), 5,3-5.6 (2H, m), 6.9-8.1 (8H, m); IR(neat) 3360 and 1760 cm⁻¹; Found: C, 74.96; H, 8.14; N, 3.88%. Calcd for C_{2.3}H_{2.9}N₁O₃: C, 75.17; H, 7.95; N, 3.81%.
- 12) The NMR and IR spectra well agreed with the literatures. $^{10)}$, $^{15)}$ NMR(CDCl $_3$) δ 1.16 (3H, d, J=8Hz), 1.1-1.8 (8H, m), 1.8-2.4 (6H, m), 4.8-5.0 (1H, m), 5.0-5.3 (2H, m); IR(neat) 1714 cm $^{-1}$; MS m / $_{e}$ 196 (M $^{+}$), 152 (M $^{+}$ -CO $_2$); Found: C, 72.90; H, 10.59%. Calcd for $C_{12}H_{20}O_2$: C, 73.43; H, 10.20%.
- 13) The NMR and IR spectra and optical rotation well agreed with the data of the literature. NMR(CDCl $_3$) & 0.6-1.0 (3H, br), 1.1-1.8 (20H, m), 1.8-2.3 (6H, m), 4.6-5.0 (1H, m), 5.2-5.4 (2H, m); IR(neat) 1730 cm $^{-1}$; [α] $_{\rm D}^{25}$ = +45.7° (c=1. CHCl $_3$); MS $_{\rm e}^{\rm m}$ / $_{\rm e}$ 280 (M+); Found: C, 76.71; H, 12.00%. Calcd for C $_{18}$ H $_{32}$ O $_{2}$: C, 77.09; H, 11.50%.
- 14) NMR(CDCl₃) δ 0.8-1.1 (3H, m), 1.1-1.8 (20H, m), 1.64 (1H, s), 1.8-2.3 (4H, m), 2.64 (2H, t, J=8Hz), 3.4-3.7 (1H, m), 5.3-5.6 (2H, m), 6.9-8.1 (8H, m); IR(KBr) 3270 and 1750 cm⁻¹; MS $^{\rm m}/_{\rm e}$ 451 (M+), 337; Found: C, 76.89; H, 9.33, N, 2.94%. Calcd for ${\rm C_{29}H_{41}N_{1}O_{3}}$: C, 77.12, H, 9.15, N, 3.10%.
- 15) H. Gerlach, K. Oertle, and A. Thalmann, Helv. Chim. Acta, 59, 755 (1976).
- 16) M. E. Synerholm, J. Am. Chem. Soc., <u>69</u>, 2581 (1947); D. E. Ames, R. E. Bowman, and R. G. Mason, J. Chem. Soc., <u>1950</u>, 174.

(Received June 11, 1977)